Current Issue : April-June Volume : 2022 Issue Number : 2 Articles : 5 Articles
Background: Gastric cancer (GC) is a common malignant cancer with a poor prognosis. Ferroptosis has been shown to play crucial roles in GC development. Long non-coding RNAs (lncRNAs) is also associated with tumor progression in GC. This study aimed to screen the prognostic ferroptosis-related lncRNAs and to construct a prognostic risk model for GC. Methods: Ferroptosis-related lncRNAs from The Cancer Genome Atlas (TCGA) GC expression data was downloaded. First, single factor Cox proportional hazard regression analysis was used to select seven prognostic ferroptosisrelated lncRNAs from TCGA database. And then, the selected lncRNAs were further included in the multivariate Cox proportional hazard regression analysis to establish the prognostic model. A nomogram was constructed to predict individual survival probability. Finally, we performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) to verify the risk model. Results: We constructed a prognostic ferroptosis-related lncRNA signature in this study. Kaplan-Meier curve analysis revealed a significantly better prognosis for the low-risk group than for the high-risk group (P = 2.036e-05). Multivariate Cox proportional risk regression analysis demonstrated that risk score was an independent prognostic factor [hazard ratio (HR) = 1.798, 95% confidence interval (CI) =1.410–2.291, P < 0.001]. A nomogram, receiver operating characteristic curve, and principal component analysis were used to predict individual prognosis. Finally, the expression levels of AP003392.1, AC245041.2, AP001271.1, and BOLA3-AS1 in GC cell lines and normal cell lines were tested by qRT-PCR....
Background: CRBP-1, a cytosolic chaperone of vitamin A, is identified in a serious number of cancers; however, its biological role in hepatocellular carcinoma (HCC) needs to be further explored. The aim of our present study is to explore the roles and mechanisms of CRBP-1 in regulating liver cancer by using in vitro and in vivo biology approaches. Methods: The expression level of CRBP-1 was detected using immunohistochemistry in HCC and matching adjacent non-tumorous liver tissues. Following established stable CRBP-1 overexpressed HCC cell lines, the cell growth and tumorigenicity were investigated both in vitro and in vivo. Intracellular retinoic acid was quantified by ELISA. The relationship between CRBP-1 and WIF1 was validated by using dual luciferase and ChIP analyses. Results: The low expression of CRBP-1 was observed in HCC tissues compared to the normal liver tissues, while high CRBP-1 expression correlated with clinicopathological characteristics and increased overall survival in HCC patients. Overexpression of CRBP-1 significantly inhibited cell growth and tumorigenicity both in vitro and in vivo. Moreover, overexpression of CRBP-1 suppressed tumorsphere formation and cancer stemness related genes expression in HCC. Mechanically, CRBP-1 inhibited Wnt/β-catenin signaling pathway to suppress cancer cell stemness of HCC. Furthermore, our results revealed that CRBP-1 could increase the intracellular levels of retinoic acid, which induced the activation of RARs/RXRs leading to the transcriptional expression of WIF1, a secreted antagonist of the Wnt/β-catenin signaling pathway, by physically interacting with the region on WIF1 promoter. Conclusion: Our findings reveal that CRBP-1 is a crucial player in the initiation and progression of HCC, which provide a novel independent prognostic biomarker and therapeutic target for the diagnosis and treatment of HCC....
Background: MicroRNAs (miRNAs) have been reported to play significant roles in non-small-cell lung cancer (NSCL C). However, the roles of microRNA (miR)-1915-3p in NSCLC remain unclear. In this study, we aimed to explore the biological functions of miR-1915-3p in NSCLC. Methods: The expression of miR-1915-3p and SET nuclear proto-oncogene (SET) in NSCLC tissues were examined by quantitative real-time PCR (qRT-PCR). Migratory and invasive abilities of lung cancer were tested by wound healing and transwell invasion assay. The direct target genes of miR-1915-3p were measured by dual-luciferase reporter assay and western blot. Finally, the regulation between METTL3/YTHDF2/KLF4 axis and miR-1915-3p were evaluated by qRT-PCR, promoter reporter assay and chromatin immunoprecipitation (CHIP). Results: miR-1915-3p was downregulated in NSCLC tissues and cell lines, and inversely associated with clinical TNM stage and overall survival. Functional assays showed that miR-1915-3p significantly suppressed migration, invasion and epithelial-mesenchymal transition (EMT) in NSCLC cells. Furthermore, miR-1915-3p directly bound to the 3′ untranslated region (3′UTR) of SET and modulated the expression of SET. SET inhibition could recapitulate the inhibitory effects on cell migration, invasion and EMT of miR-1915-3p, and restoration of SET expression could abrogate these effects induced by miR-1915-3p through JNK/Jun and NF-κB signaling pathways. What’s more, miR- 1915-3p expression was regulated by METTL3/YTHDF2 m6A axis through transcription factor KLF4. Conclusions: These findings demonstrate that miR-1915-3p function as a tumor suppressor by targeting SET and may have an anti-metastatic therapeutic potential for lung cancer treatment....
Human pluripotent stem cells (hPSC) are known to acquire chromosomal abnormalities, which range from point mutations to large copy number changes, including full chromosome aneuploidy. These aberrations have a wide-ranging influence on the state of cells, in both the undifferentiated and differentiated state. Currently, very little is known on how these abnormalities will impact the clinical translation of hPSC, and particularly their potential to prime cells for oncogenic transformation. A further complication is that many of these abnormalities exist in a mosaic state in culture, which complicates their detection with conventional karyotyping methods. In this review we discuss current knowledge on how these aberrations influence the cell state and how this may impact the future of research and the cells’ clinical potential....
Mitochondrial DNA (mtDNA) depletion syndromes are a group of autosomal recessive disorders associated with a spectrum of clinical diseases, which include progressive external ophthalmoplegia (PEO). *ey are caused by variants in nuclear DNA (nDNA) encoded genes, and the gene that encodes for mtDNA polymerase gamma (POLG) is commonly involved. A splice-site mutation in POLG, c.3104+3A > T, was previously identified in three families with findings of PEO, and studies demonstrated this variant to result in skipping of exon 19. Here, we report a 57-year-old female who presented with ophthalmoplegia, ptosis, muscle weakness, and exercise intolerance with a subsequent muscle biopsy demonstrating mitochondrial myopathy on histopathologic evaluation and multiple mtDNA deletions by southern blot analysis. Whole-exome sequencing identified the previously characterized c. 3104+3A > T splice-site mutation in compound heterozygosity with a novel frameshift variant, p.Gly23Serfs∗236 (c.67_88del). mtDNA copy number analysis performed on the patient’s muscle showed mtDNA depletion, as expected in a patient with biallelic pathogenic mutations in POLG. *is is the first reported case with POLG p.Gly23Serfs∗236, discovered in a patient presenting with features of PEO....
Loading....